Google Research

CASPER: Controllable Semantic Parsing via Retrieval Augmentation

Summary

We proposed CASPER (ControllAble Semantic Parser via Exemplar Retrieval).

- Given a query, the parser retrieves related **exemplars** from a retrieval index, **augments** them to the query, and then applies a seq2seq model to produce a parse.
- The parser's behavior can be modified without additional model training by manipulating the retrieval process at test time.

Motivation

Additionally, we want to modify the parser's behavior without additional training.

- Less computation resources.
- Stability: Avoid model churn.
- Faster development: Update the parser and immediately see the result.
- Customization: Clients can modify the parser without touching the model's params on the server.

Intuition:

Increasing faithfulness toward exemplars: For the modified index to have effects, we want to parser to lean toward using instead of ignoring the exemplars. We propose:

Method 1: Mix in anonymized training data. This teaches the generator to rely on the exemplars when producing semantic labels.

Ice Pasupat, Yuan Zhang, Kelvin Guu

Approach

Procedure: Given a query,

• The **retriever** retrieves related **exemplars** (e.g., training examples with similar queries) from a retrieval index.

• The index initially contains training examples, but can be modified at test time. • Retrieval score = dot product of embeddings from Universal Sentence Encoder. The seq2seq generator takes the exemplar-augmented query and produces a parse. \circ We fine-tune T5 on (augmented input, output) pairs.

• The generator **learns to use (or ignore)** additional information from the exemplars. • We can modify the parser's behavior by **manipulating the retrieval process** (e.g., augment the index). This can be done at test time without additional model training.

tags are present.

exemplars with the same template as the gold output.)

Method 2: Teach the model to be extra

faithful to the exemplars when **guiding**

Experiments

(0) Standard setup on the English portion of MTOP (Li et al., 2021)

Method	Test Acc
mBART+MT (Li '21)	84.3
seq2seq (T5)	85.1
CASPER (-anon)	86.4
CASPER (+anon)	85.5

- Improve upon SotA by 2% • Adding anonymized training data
- (to increase faithfulness) slightly hurts, but will pay off in other experiments.

(1) **Domain bootstrapping:** Remove 1 domain from the training data. At test time, add **100 examples** of that domain to the index.

Method	added domain	other domains
seq2seq (T5)	5.7	82.7
CASPER (-anon)	39.2	84.1
CASPER (+anon)	43.9	83.9

CASPER can parse queries in a new domain while maintaining the accuracy on other domains. (Result averaged over 5 bootstrapped domains)

(2) Parse guiding: Override the retriever by manually supplying oracle exemplars (~ override common model errors / sensitive queries)

Method	retrieved exs	oracle exs	oracle exs + guiding tags
CASPER (+anon)	84.3	88.2	88.3
CASPER (+anon+guide)	83.9	89.3	93.0

CASPER that learned about guiding tags can utilize the oracle exemplars better when the tags are on.

(3) Schema refactoring: Split 10 semantic labels into 2 each at test

time.

Method

seq2seq (T5)

CASPER (-anon)

CASPER (+anon)

CASPER (+anon+guide)

pre-

83.3

83.5

84.5

83.9

refactor

post-

69.6

78.5

81.2

81.6

refactor

IN get message IN get todo

Both adding anonymized training examples and guiding tags on the affected exemplars lead to improved post-refactoring accuracy.

References	
ACL 2021) MTOP: A comprehensive multilingual task-oriented semantic parsing benchmark	(1