Motivation

Goal: Modify the semantic parser’s behavior at test time.

Example: The model is trained on training data:

- make a call to Jay Brown’s mom
- send a text message to Jack

At test time, a developer wants to add a new domain to the parser. The parser should produce MESSAGING parses given a few examples:

- MESSAGING
 - [IN send message = [SL recipient = Jack]]

Additionally, we want to modify the parser’s behavior without additional training:

- Less computation resources.
- Stability: Avoid model churn.
- Faster development: Update the parser and immediately see the result.
- Customization: Clients can modify the parser without touching the model’s params on the server.

Procedure: Given a query:

- The retriever retrieves related exemplars (e.g., training examples with similar queries) from a retrieval index.
 - The index initially contains training examples, but can be modified at test time.
 - Retrieval score = dot product of embeddings from Universal Sentence Encoder.
 - The seq2seq generator takes the exemplar-augmented query and produces a parse.
 - We fine-tune T5 on (augmented input, output) pairs.

Intuition:

- The generator learns to use (or ignore) additional information from the exemplars.
- We can modify the parser’s behavior by manipulating the retrieval process (e.g., augment the index). This can be done at test time without additional model training.

Increasing faithfulness toward exemplars: For the modified index to have effects, we want to parser to lean toward using instead of ignoring the exemplars. We propose:

Method 1: Mix in anonymized training data. This teaches the generator to rely on the exemplars when generating semantic labels.

Method 2: Teach the model to be extra faithful to the exemplars when guiding tags are present.

Experiments

(1) Domain bootstrapping: Remove 1 domain from the training data. At test time, add 100 examples of that domain to the index.

<table>
<thead>
<tr>
<th>Method</th>
<th>Test Acc</th>
</tr>
</thead>
<tbody>
<tr>
<td>seq2seq (T5)</td>
<td>85.1</td>
</tr>
<tr>
<td>CASPER (+anon)</td>
<td>86.4</td>
</tr>
<tr>
<td>CASPER (+anon+guide)</td>
<td>85.5</td>
</tr>
</tbody>
</table>

(2) Parse guiding: Override the retriever by manually supplying oracle exemplars (= override common model errors / sensitive queries)

<table>
<thead>
<tr>
<th>Method</th>
<th>retrieved exs</th>
<th>oracle exs</th>
<th>oracle exs + guiding tags</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASPER (+anon)</td>
<td>84.3</td>
<td>88.2</td>
<td>88.3</td>
</tr>
<tr>
<td>CASPER (+anon+guide)</td>
<td>83.9</td>
<td>89.3</td>
<td>93.0</td>
</tr>
</tbody>
</table>

(3) Schema refactoring: Split 10 semantic labels into 2 each at test time.

<table>
<thead>
<tr>
<th>Method</th>
<th>retrieved exs</th>
<th>oracle exs</th>
<th>oracle exs + guiding tags</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASPER (+anon)</td>
<td>84.3</td>
<td>88.2</td>
<td>88.3</td>
</tr>
<tr>
<td>CASPER (+anon+guide)</td>
<td>83.9</td>
<td>89.3</td>
<td>93.0</td>
</tr>
</tbody>
</table>

CASPER can parse queries in a new domain while maintaining the accuracy on other domains.

(Result averaged over 5 bootstrapped domains)

Conclusion:

- We fine-tune T5 on (augmented input, output) pairs.
- The seq2seq generator can utilize the oracle exemplars better when the tags are on.

References:

Ice Pasupat, Yuan Zhang, Kelvin Guu