
SPoC: Search-based Pseudocode to CodeSumith Kulal*, Panupong Pasupat*, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken, Percy LiangDepartment of Computer Science, Stanford University
Summary: Given pseudocode and test cases, the task is to synthesize aprogram, which will be evaluated on functional correctness. We releasethe SPoC dataset (18K programs + human-authored pseudocode), asearch-based synthesizer, and error localization models to guide searchbased on information from compilation errors.

Task and Motivation
Goal: Synthesize programs that are long (10–20 lines) and functionally correct.

i xi yi1 in function main int main() {2 let n be integer int n;3 read n cin >> n;4 let A be vector of integers vector<int> A;5 set size of A = n A.resize(n);6 read n elements into A for(int i = 0; i < A.size(); i++) cin >> A[i];7 for all elements in A for(int i = 0; i < A.size(); i++) {8 set min_i to i int min_i = i;9 for j = i + 1 to size of A exclusive for(int j = i+1; j < A.size(); j++) {10 set min_i to j if A[min_i] > A[j] if(A[min_i] > A[j]) { min_i = j; }11 swap A[i], A[min_i] swap(A[i], A[min_i]);12 print all elements of A for(int i=0; i<A.size(); i++) cout<<A[i]<<" ";
}Public test case 1 (out of 5): 5 3 2 4 1 5 → 1 2 3 4 5Hidden test case 1 (out of 8): 8 9 2 4 5 6 2 7 1 → 1 2 2 4 5 6 7 9Input: pseudocode lines x1:N + public test casesOutput: a program with code lines y1:NEvaluation:Functional correctness: The program must pass both public + private test cases.Performance metric: number of synthesis trials(1 trial = 1 compiler call + execution on all public test cases)Why? Most existing works either generate short programs or ignore functional correctnessduring evaluation. Evaluate functionalInput Output size correctness?Semantic parsing natural language usually short yes(e.g., SQL, logical forms) (e.g., database execution)Language to code natural language long mostly no(e.g., methods, classes) (e.g., exact match, BLEU)Test-driven test cases usually short yesprogram synthesisThis work natural language long yes+ test cases (program)

SPoC Dataset
bit.ly/spoc-datasetMain features:

• Complex programs from programming competitions + test cases, inspired by theNAPS dataset (Zavershynskyi et al., NAMPI 2018).
• 18356 programs
• All programs come with human-authored pseudocode.Local-level challenges: Translating each line is non-trivial.

High-level descriptionsread n values into array a and array b for(int i = 0; i < n; i++) cin >> a[i] >> b[i];read n and m in a loop, printing while (cin >> n >> m) cout << n * m / 2 << endl;... n*m/2 and a new line on each iterationprint all elements of ans for (int i = 0; i < ans.size(); i++) cout << ans[i];Complex sentences and diverse operationschange max to i if tree[i] > tree[max] max = tree[i] > tree[max] ? i : max;... or max otherwiseif m and n are odd if (m % 2 != 0 && n % 2 != 0)if a is a digit return 1 if (a >= ’0’ && a <= ’9’) return 1;Context-dependent interpretationadd s to q (q is a set) q.insert(s);add ok to ans (ans is an integer) ans += ok;add element a to v (v is a vector) v.push_back(a);

Global-level challenges:
• The programs are 14 lines long on average.
• One wrong code line can make the whole program incorrect!
• And most programs have at least one difficult line. (See the experiments)Two data splits: TestP (split by problem) and TestW (split by pseudocode author).

x1

x2

x3

translate c11(p11= 0.7) c12(p12= 0.2) c13(p13= 0.15)

c21(p21= 0.4) c22(p22= 0.3) c23(p23= 0.05)

c31(p31= 0.3) c32(p32= 0.2) c33(p33= 0.05)

best-first search

1

...

...

...

C1:

C2:

C3:

2 3 4

→ compilation error → runtime error → compilation error → success

1 2 3

→ runtime error → successi* = 2
down-weight c21

model

3:error: ‘n’ was not declared

best-first search with error localization

Base Framework
Step 1: Translate. For each pseudocode line xi, use a standard seq2seq model to generatecandidate code lines cij with probability pij = p(cij|xi).Step 2: Best first search. Start from the top prediction (yi = ci1). Iterate through possiblecombinations yi = cij with decreasing joint probability ∏

i pij until the program passes allpublic test cases (or the budget exhausts).Error Localization
When a program fails, we want to avoid using the source of that failure over again.Proposal: When a compilation error occurs, use an error localization method to infer theoffending code line(s), then demote or blacklist them.In the example figure above, (c11, c22, c32) satisfies the test cases. Best-first search iteratesin the order of decreasing probabilities and succeeds in 4 compiler calls. The errorlocalization method down-weights c21, leading to an earlier success.Method 1: Multiclass classification. Predict the offending line from the error message.

in function main

 let n be an int

 add 1 to n

int main() {

 int an;

 n++;

‘n’ was not declared

0

‘n’ was not declared

‘n’ was not declared

-1

-2 LSTMs

LSTMs

LSTMs 0.04

0.95

0.01
FFNN +
softmax

error line offset error message

L
S
T
M

p(line i is wrong)Method 2: Prefix-based pruning. Spend a few trials to validate code prefixes.
for (i = 0; i < n; i++)

 cin >> arr[i]

sort(arr, arr + n);

→ compilation error

for (i = 0; i < n; i++)

 cin >> arr[i]

→ compilation error

for (i = 0; i < n; i++)

 {}

→ no error

(add braces when needed)

blacklist
the
prefix
{c1_, c2_}

Experiments and Takeaways
TestP TestW

0 500 1,000 1,500 2,000 2,500 3,00032
34
36
38
40

budget B

success rate (%)

0 500 1,000 1,500 2,000 2,500 3,00052
54
56
58
60

budget B

success rate (%)

B = 10 100 1000 3000no localization 26.5 32.5 37.5 39.1multiclass 28.4 34.2 38.3 39.2prefix-based 25.3 33.0 37.9 40.3
B = 10 100 1000 3000no localization 42.5 51.0 57.3 59.4multiclass 44.4 53.7 58.6 60.3prefix-based 41.0 50.5 57.9 60.7top-one (B = 1): 17.8 oracle (B =∞): 55.2 top-one (B = 1): 30.7 oracle (B =∞): 71.4Takeaway 1: Long programs → more chances to go wrong. Even though line-leveltranslation accuracy is 85%, stitching the top translations gives a success rate of 24.6%.Takeaway 2: Search increases the success rate. Under the budget of 100 trials, thesuccess rate goes up to 44.7%.Takeaway 3: Error localization reduces the number of trials needed:

• The multiclass classification model reduces the number of trials needed in 15.5% ofthe programs (median reduction of 26 trials).
• Prefix-based pruning increases the number of trials on easy problems (since we need tocompile prefixes) but greatly helps on harder programs.

bit.ly/spoc-dataset

