Span-based Hierarchical Semantic Parsing for Task-Oriented Dialog

Panupong Pasupat* Stanford University

Setup

Task: Parse the sentence x into **Task Oriented Parse (TOP)**, a tree-based semantic representation with nested intents and slots [1].

IN:GET_DIRECTION directions₀ to₁ SL:DESTINATION IN:FIND_EVENT SL:ORGANIZER S_3 SL:CATEGORY John₂ party₄

The hierarchical representation enables a dialog system to perform **multi-step task fulfillment**:

- IN:FIND_EVENT: Find the event's address.
- IN:GET_DIRECTION: Use the queried address to get the direction.

Previous span-based parsing algorithms [2, 3, 4] score the labels of each span independently, then decode a valid tree with the highest tree score (= total scores of the labels).

Contributions

Contribution 1: We reformulate the tree score as log-likelihood of the tree. \Rightarrow Training becomes highly pararellizable + No need to run a slow decoder during training. \Rightarrow Faster training

Contribution 2: Instead of scoring span labels independently, we introduce edge scores that model label **dependency** between parent and child nodes. \Rightarrow Higher accuracy

References

- [1] Sonal Gupta, Rushin Shah, Mrinal Mohit, Anuj Kumar, and Mike Lewis. Semantic parsing for task oriented dialog using hierarchical representations. In EMNLP, 2018.
- [2] Mitchell Stern, Jacob Andreas, and Dan Klein. A minimal spanbased neural constituency parser. In ACL, 2017.
- [3] David Gaddy, Mitchell Stern, and Dan Klein. What's going on in neural constituency parsers? an analysis. In NAACL, 2018.
- [4] Nikita Kitaev and Dan Klein. Constituency parsing with a selfattentive encoder. In ACL, 2018.

Sonal Gupta Facebook Assistant

Karishma Mandyam* University of Washington

*work done while at Facebook Assistant

Span-based Parsing	Co
For each token span $x_{i:j} = (x_i, \dots, x_{j-1})$, let $T[i, j]$ be the unary chain c covering the span:	Co trib
$T[0,5] = (IN:GET_DIRECTION)$ $T[2,5] = (SL:DESTINATION, IN:FIND_EVENT)$ T[2,3] = (SL:ORGANIZER) $T[1,3] = \emptyset etc.$	Wi [.] are

Note that not all mappings T form a valid tree (e.g., a T with partially overlapping non- \varnothing spans is invalid).

Baseline Method

Previous works decode the best valid *T* as follows:

Node Score: Define $f_n(x_{i:j}, c) \in \mathbb{R}$ for each span $x_{i:j}$ and unary chain c:

- Run a sequence encoder (e.g., LSTM) on $x_{0:n}$ to get a sequence encoding $h_{0:n}$.
- Compute the span embedding of $x_{i:i}$ by concatenating various features (e.g., endpoints h_i and h_{i-1} ; or the average of h_i , ..., h_{i-1}).
- Apply feed-forward layers on the span embedding to compute a score for each $c \neq \emptyset$.
- Fix $f_n(x_{i:i}, c) = 0$ when $c = \emptyset$. This is needed for decoding to work.

Prediction: Use a CKY algorithm to decode a *valid* tree *T* with the maximum tree score:

$$s(T) := \sum_{i < j} f_n(x_{i:j}, T[i, j])$$

which is just a sum of node scores. (Can also be approximated with greedy decoding.)

Training: Given gold trees T^* , tune the parameters of f_n to minimize the margin loss:

$$L(T^*) = \max\left\{0, -s(T^*) + \max_{T} [\Delta(T, T^*) + s(T)]\right\}$$

• **Requires running a decoder** to compute the \max_T term, which can be slow!

Training: Given gold trees T^* , we want to tune the parameters of f_n to maximize log $p(T^*)$. This is equivalent to minimizing the cross-entropy loss:

Rushin Shah* Google

ontribution 1: Faster Training

onvert node scores $f_n(x_{i:j}, c)$ into a probability disibution by taking **softmax**:

Mike Lewis

Facebook AI Research

$$p(T[i, j] = c) = \frac{\exp[f_n(x_{i:j}, c)]}{\sum_{c'} \exp[f_n(x_{i:j}, c')]}$$

ith a simplifying assumption that the values of T[i, j]e all independent, we get

$$p(T) = \prod_{i < j} p(T[i, j])$$

og $p(T) = \sum_{i < j} \log p(T[i, j])$
$$= \sum_{i < j} \begin{bmatrix} f_n(x_{i:j}, T[i, j]) \\ -\log \sum_{c'} \exp [f_n(x_{i:j}, c')] \end{bmatrix}$$

Prediction: We want to decode a valid *T* that maximizes $\log p(T)$. Since the log-sum-exp term does not depend on *T*, we get

$$\begin{aligned} \underset{\text{valid } T}{\operatorname{argmax}} \log p(T) &= \underset{\text{valid } T}{\operatorname{argmax}} \sum_{i < j} f_n(x_{i:j}, T[i, j]) \\ &= \underset{\text{valid } T}{\operatorname{argmax}} s(T) \\ \underset{\text{valid } T}{\operatorname{valid}} T\end{aligned}$$

This means finding a valid T that maximizes $\log p(T)$ ⇔ maximizing the tree score from previous work. So we can use the same CKY algorithm as previous work!

$$L_{\text{new}}(T^*) = \sum_{i < j} -\log p(T^*[i, j])$$
 Predivelocity of the valid of the value of the va

- No need to run a decoder during training.
- Highly paralellizable. Can even process multiple examples at once.
- Reduce the training time by 4x–5x without a sacrifice in accuracy!

Luke Zettlemoyer Facebook AI Research

Contribution 2: Edge Scores

Motivation: "John" could belong to many types of slots, but with its parent intent node "John's party" being IN:FIND_EVENT, "John" is more likely to be SL:ORGANIZER. We want to model such dependency between parent and child labels.

Revised Model: We take softmax on edge scores:

p(

log

iction: We modify the CKY algorithm to find a T that maximizes the revised tree score

This **improves the model accuracy** (exact tree match: $80.8\% \rightarrow 81.8\%$; labeled bracket F1: $93.35\% \rightarrow 93.63\%$).

Training: Optimize the cross-entropy loss for both node and edge score terms. Still highly parallelizable (but with 2x slow down as there are 2x more terms).

IN:FIND_EVENT SL:ORGANIZER S_3 SL:CATEGORY John, party₄

Edge Score: Define $f_{e}(x_{i:j}, c, l)$ for each span $x_{i:j}$, unary chain c, and the parent label l.

- So $f_e(x_{2:3}, (SL:ORGANIZER), IN:FIND_EVENT)$ measures how likely is the span $x_{2:3} = "John"$ to be labeled as SL:ORGANIZER under a parent bracket IN:FIND_EVENT.
- We apply feedforward layers on the embeddings of $x_{i:i}$ and c to get a score for each l.

$$\pi[i, j] = l \mid T[i, j] = c) = \frac{\exp[f_{e}(x_{i:j}, c, l)]}{\sum_{l'} \exp[f_{e}(x_{i:j}, c, l')]}$$

where $\pi[i, j] =$ parent label of $x_{i:j}$. Then:

$$p_{edge}(T) = \sum_{i < j} \begin{bmatrix} f_n(x_{i:j}, T[i, j]) \\ -\log \sum_{c'} \exp[f_n(x_{i:j}, c')] \\ +\log p(\pi[i, j] \mid T[i, j]) \end{bmatrix}$$

$$s_{\text{edge}}(T) := \sum_{i < j} \left[\begin{array}{c} f_n(x_{i:j}, T[i, j]) \\ + \log p(\pi[i, j] \mid T[i, j]) \end{array} \right]$$