
Span-basedHierarchicalSemanticParsing forTask-OrientedDialogPanupong Pasupat* Sonal Gupta Karishma Mandyam* Rushin Shah* Mike Lewis Luke ZettlemoyerStanford University Facebook Assistant University of Washington Google Facebook AI Research Facebook AI Research*work done while at Facebook Assistant
Setup
Task: Parse the sentence x into Task Oriented
Parse (TOP), a tree-based semantic representationwith nested intents and slots [1].

IN:GET_DIRECTION

SL:DESTINATION

IN:FIND_EVENT

SL:CATEGORY

party4
’s3SL:ORGANIZER

John2

directions0 to1

The hierarchical representation enables a dialog sys-tem to perform multi-step task fulfillment:
• IN:FIND_EVENT: Find the event’s address.
• IN:GET_DIRECTION: Use the queried address toget the direction.Previous span-based parsing algorithms [2, 3, 4]score the labels of each span independently, then de-code a valid tree with the highest tree score (= totalscores of the labels).

Contributions
Contribution 1: We reformulate the tree score as
log-likelihood of the tree.
⇒ Training becomes highly pararellizable + No
need to run a slow decoder during training.
⇒ Faster training

Contribution 2: Instead of scoring span labels inde-pendently, we introduce edge scores that model label
dependency between parent and child nodes.
⇒ Higher accuracy

References
[1] Sonal Gupta, Rushin Shah, Mrinal Mohit, Anuj Kumar, andMike Lewis. Semantic parsing for task oriented dialog usinghierarchical representations. In EMNLP, 2018.[2] Mitchell Stern, Jacob Andreas, and Dan Klein. A minimal span-based neural constituency parser. In ACL, 2017.[3] David Gaddy, Mitchell Stern, and Dan Klein. What’s going onin neural constituency parsers? an analysis. In NAACL, 2018.[4] Nikita Kitaev and Dan Klein. Constituency parsing with a self-attentive encoder. In ACL, 2018.

Span-based ParsingFor each token span xi:j = (xi, . . . , xj−1), let T [i, j ] bethe unary chain c covering the span:
T [0, 5] = (IN:GET_DIRECTION)
T [2, 5] = (SL:DESTINATION, IN:FIND_EVENT)
T [2, 3] = (SL:ORGANIZER)
T [1, 3] = ∅ etc.

Note that not all mappings T form a valid tree(e.g., a T with partially overlapping non-∅ spans is invalid).
Baseline MethodPrevious works decode the best valid T as follows:
Node Score: Define fn(xi:j , c) ∈ R for each span xi:jand unary chain c:
• Run a sequence encoder (e.g., LSTM) on x0:n toget a sequence encoding h0:n.
• Compute the span embedding of xi:j by concate-nating various features (e.g., endpoints hi and
hj−1; or the average of hi, . . . , hj−1).

• Apply feed-forward layers on the span embed-ding to compute a score for each c 6= ∅.
• Fix fn(xi:j , c) = 0 when c = ∅. This is neededfor decoding to work.

Prediction: Use a CKY algorithm to decode a validtree T with the maximum tree score:
s(T ) :=∑

i<j
fn(xi:j , T [i, j ])

which is just a sum of node scores. (Can also be ap-proximated with greedy decoding.)
Training: Given gold trees T ∗, tune the parametersof fn to minimize the margin loss:
L(T ∗) = max{0,−s(T ∗) + max

T
[∆(T , T ∗) + s(T )]}

• Requires running a decoder to compute themaxT term, which can be slow!

Contribution 1: Faster TrainingConvert node scores fn(xi:j , c) into a probability dis-tribution by taking softmax:
p(T [i, j ] = c) = exp [fn(xi:j , c)]∑

c′ exp [fn(xi:j , c′)]With a simplifying assumption that the values of T [i, j ]are all independent, we get
p(T ) =∏

i<j
p(T [i, j ])

logp(T ) =∑
i<j

logp(T [i, j ])
=∑

i<j

[
fn(xi:j , T [i, j ])
− log∑c′ exp [fn(xi:j , c′)]

]

Prediction: We want to decode a valid T that max-imizes logp(T ). Since the log-sum-exp term does notdepend on T , we get
argmaxvalid T logp(T ) = argmaxvalid T

∑
i<j

fn(xi:j , T [i, j ])
= argmaxvalid T s(T )

This means finding a valid T that maximizes logp(T )
⇔ maximizing the tree score from previous work. Sowe can use the same CKY algorithm as previous
work!

Training: Given gold trees T ∗, we want to tune theparameters of fn to maximize logp(T ∗). This is equiv-alent to minimizing the cross-entropy loss:
Lnew(T ∗) =∑

i<j
− logp(T ∗[i, j ])

• No need to run a decoder during training.
• Highly paralellizable. Can even process multi-ple examples at once.
• Reduce the training time by 4x–5x without a

sacrifice in accuracy!

Contribution 2: Edge Scores

IN:FIND_EVENT

SL:CATEGORY

party4
’s3SL:ORGANIZER

John2
Motivation: “John” could belong to many types ofslots, but with its parent intent node “John’s party”being IN:FIND_EVENT, “John” is more likely to be
SL:ORGANIZER. We want to model such dependency
between parent and child labels.
Edge Score: Define fe(xi:j , c, l) for each span xi:j ,unary chain c, and the parent label l.
• So fe(x2:3, (SL:ORGANIZER), IN:FIND_EVENT)measures how likely is the span x2:3 =“John”to be labeled as SL:ORGANIZER under a parentbracket IN:FIND_EVENT.
• We apply feedforward layers on the embeddingsof xi:j and c to get a score for each l.

Revised Model: We take softmax on edge scores:
p(π[i, j ] = l | T [i, j ] = c) = exp [fe(xi:j , c, l)]∑

l′ exp [fe(xi:j , c, l′)]where π[i, j ] = parent label of xi:j . Then:
logpedge(T ) =∑

i<j

 fn(xi:j , T [i, j ])
− log∑c′ exp [fn(xi:j , c′)]+ logp(π[i, j ] | T [i, j ])


Prediction: We modify the CKY algorithm to find avalid T that maximizes the revised tree score

sedge(T ) :=∑
i<j

[
fn(xi:j , T [i, j ])+ logp(π[i, j ] | T [i, j ]) ]

This improves the model accuracy (exact tree match:80.8% → 81.8%; labeled bracket F1: 93.35% → 93.63%).
Training: Optimize the cross-entropy loss for bothnode and edge score terms. Still highly parallelizable(but with 2x slow down as there are 2x more terms).


