Span-based Hierarchical Semantic Parsing for Task-Oriented Dialog

Panupong Pasupat”
Stanford University

Task: Parse the sentence x into Task Oriented
Parse (TOP), a tree-based semantic representation
with nested intents and slots |1].

IN:GET_DIRECTION

/\

directions, to, SL:DESTINATION

IN:FIND_EVENT

_— T

SL:0RGANIZER S, SL:CATEGORY

| |
John, party,

The hierarchical representation enables a dialog sys-
tem to perform multi-step task fulfillment:

e IN:FIND _EVENT: Find the event's address.

e IN:GET_DIRECTION: Use the queried address to
get the direction.

Previous span-based parsing algorithms (2, 3, 4]
score the labels of each span independently, then de-
code a valid tree with the highest tree score (= total
scores of the labels).

Contributions

Contribution 1: We reformulate the tree score as
log-likelihood of the tree.

= lraining becomes highly pararellizable + No
need to run a slow decoder during training.

= Faster training

Contribution 2: Instead of scoring span labels inde-
pendently, we introduce edge scores that model label
dependency between parent and child nodes.

= Higher accuracy

[1] Sonal Gupta, Rushin Shah, Mrinal Mohit, Anuj Kumar, and
Mike Lewis. Semantic parsing for task oriented dialog using
hierarchical representations. In EMNLP, 2018.

2] Mitchell Stern, Jacob Andreas, and Dan Klein. A minimal span-
based neural constituency parser. In ACL, 2017.

3] David Gaddy, Mitchell Stern, and Dan Klein. What's going on
in neural constituency parsers? an analysis. In NAACL, 2018.

[4] Nikita Kitaev and Dan Klein. Constituency parsing with a self-
attentive encoder. In ACL, 2018.

Sonal Gupta

Facebook Assistant

Karishma Mandyam®
University of Washington

Rushin Shah*
Google

Mike Lewis
Facebook Al Research

*work done while at Facebook Assistant

Span-based Parsing

For each token span x;; = (x;, ..., xj_1), let T[i, j] be
the unary chain ¢ covering the span:

710,5] = (IN:GET_DIRECTION)

2,5] = (SL:DESTINATION, IN:FIND_EVENT)
2,3] = (SL:0RGANIZER)

1,3|=92 etc.

~ ~

Note that not all mappings T form a valid tree
(e.g., a T with partially overlapping non-& spans is invalid).

Baseline Method

Previous works decode the best valid T as follows:

Node Score: Define f,(x;.;, ¢) € R for each span x;;
and unary chain c:

e Run a sequence encoder (e.g.,, LSTM) on xq., to
get a sequence encoding hg.p.

e Compute the span embedding of x;.; by concate-
nating various features (e.g., endpoints h; and
h;_1; or the average of h;,..., hj_4).

e Apply feed-forward layers on the span embed-
ding to compute a score for each ¢ #+ @.

o Fix 7,(x;j,c) = 0 when ¢ = &. This is needed

for decoding to work.

Prediction: Use a CKY algorithm to decode a valid
tree [with the maximum tree score:

S(T) :=) falxiy, T[i, f)

i<j

which is just a sum of node scores. (Can also be ap-
proximated with greedy decoding.)

Training: Given gold trees 7%, tune the parameters
of f, to minimize the margin loss:

L(T") = max {O, —s(T7) + m%ax[A(T, ™)+ S(T)]}

e Requires running a decoder to compute the
max7 term, which can be slow!

Contribution 1: Faster Training

Convert node scores f,(x;, ¢) into a probability dis-
tribution by taking softmax:

exp [fn (Xi:jr C)]
>_ o explfn(xij, €]

With a simplifying assumption that the values of T]i, /|
are all independent, we get

p(T) = |p(Tli. j)

i<j
log p(T) =) log p(T[i, j])
i<j

o i fn(Xi:'r T[l'/])
- Z i —lOé Zc’ eXP[fn(Xi:jrC/)]]

p(Tli,j] = c) =

i<j

Prediction: We want to decode a valid T that max-
imizes log p(T). Since the log-sum-exp term does not
depend on T, we get

argmax log p(T) = argmax Z fo(xi:j, T1E, f))

valid T valid T 7
= argmaxs(/)
valid T

This means finding a valid T that maximizes logp(T)
& maximizing the tree score from previous work. So
we can use the same CKY algorithm as previous
work!

Training: Given gold trees T, we want to tune the
parameters of f, to maximize log p(7*). This is equiv-
alent to minimizing the cross-entropy loss:

Loew(T*) =) _—log p(T*[i,)

i<j
e No need to run a decoder during training.

e Highly paralellizable. Can even process multi-
nle examples at once.

e Reduce the training time by 4x-5x without a
sacrifice in accuracy!

Luke Zettlemoyer
Facebook Al Research

Contribution 2: Edge Scores

IN:FIND_EVENT

_— T

SL:0RGANIZER s, SL:CATEGORY

| |
John, party,

Motivation: “John” could belong to many types of
slots, but with its parent intent node “John’s party”
being IN:FIND_EVENT, “John” is more likely to be
SL:0RGANIZER. We want to model such dependency
between parent and child labels.

Edge Score: Define f.(x;}, ¢, [) for each span x;;,
unary chain ¢, and the parent label [.

e So fo(x2:3, (SL:0RGANIZER), IN:FIND_EVENT)
measures how likely is the span x2.3 ="John”
to be labeled as SL:0RGANIZER under a parent
bracket IN:FIND_EVENT.

e We apply feedforward layers on the embeddings
of x;;; and ¢ to get a score for each .

Revised Model: We take softmax on edge scores:

exp |fe(xij, ¢, 1))

p(ali, jl= L] T[i,j]= ¢) = >, explfe(xij, ¢, 1)

where 7|i, j| = parent label of x;.;. Then:

I fn(Xi:jr T[i,j])
0g Pedge(T) =) | —log). exp[fy(xij, ¢')]
<j | +logp(nli,j]| Ti,)

Prediction: We modify the CKY algorithm to find a
valid T that maximizes the revised tree score

N fo(xij, Tli,)
Sedge(T) " g [+ lojg]p(ﬂ[i,j] ‘ T[l'/])]

This improves the model accuracy (exact tree match:
80.8% — 81.8%; labeled bracket F1: 93.35% — 93.63%).

Training: Optimize the cross-entropy loss for both
node and edge score terms. Still highly parallelizable
(but with 2x slow down as there are 2x more terms).

