
Macro Grammars
and Holistic Triggering

for Efficient Semantic Parsing

Yuchen Zhang and Panupong Pasupat and Percy Liang

EMNLP 2017

In what city did Piotr's last 1st place finish occur?
2

In what city did Piotr's last 1st place finish occur?
3

How long did it take this competitor to finish the 4x400
meter relay at Universiade in 2005?

Where was the competition held immediately before the
one in Turkey?

How many times has this competitor placed 5th or better in
competition?

Semantic Parsing

Parse utterances into executable logical forms

“Who ranked right after Turkey?”

Rank Nation Gold Silver Bronze

1 France 3 1 1

2 Turkey 2 0 1

3 Sweden 2 0 0

4

Semantic Parsing

Parse utterances into executable logical forms

“Who ranked right after Turkey?”

Rank Nation Gold Silver Bronze

1 France 3 1 1

2 Turkey 2 0 1

3 Sweden 2 0 0

NationOf.NextOf.HasNation.Turkey

5

Semantic Parsing

Parse utterances into executable logical forms

“Who ranked right after Turkey?”

Rank Nation Gold Silver Bronze

1 France 3 1 1

2 Turkey 2 0 1

3 Sweden 2 0 0

NationOf.NextOf.HasNation.Turkey

6

Semantic Parsing

Parse utterances into executable logical forms

“Who ranked right after Turkey?”

Rank Nation Gold Silver Bronze

1 France 3 1 1

2 Turkey 2 0 1

3 Sweden 2 0 0

NationOf.NextOf.HasNation.Turkey

7

Semantic Parsing

Parse utterances into executable logical forms

“Who ranked right after Turkey?”

Rank Nation Gold Silver Bronze

1 France 3 1 1

2 Turkey 2 0 1

3 Sweden 2 0 0

NationOf.NextOf.HasNation.Turkey

8

Semantic Parsing

Parse utterances into executable logical forms

“Who ranked right after Turkey?”

Rank Nation Gold Silver Bronze

1 France 3 1 1

2 Turkey 2 0 1

3 Sweden 2 0 0

NationOf.NextOf.HasNation.Turkey

Denotation
9

Floating Parser

Given an utterance, the parser composes logical

forms using a grammar

▸ Terminal rules generate terminal tokens

“Who ranked right after Turkey?”

TokenSpan → Ent

TurkeyEnt

10

Floating Parser

Given an utterance, the parser composes logical

forms using a grammar

▸ Terminal rules generate terminal tokens

“Who ranked right after Turkey?”

∅ → Rel

Turkey

Nation

Ent

Rel

11

Floating Parser

Given an utterance, the parser composes logical

forms using a grammar

▸ Compositional rules combine parts

“Who ranked right after Turkey?”

Ent[z
1

] → Set[z
1

]

Turkey

Nation
Turkey

Ent

Rel

Set

12

Floating Parser

Given an utterance, the parser composes logical

forms using a grammar

▸ Compositional rules combine parts

“Who ranked right after Turkey?”

Rel[z
1

] + Set[z
2

] → Set[Has-z
1

.z
2

]
Turkey

Nation
TurkeySet

HasNation.Turkey

Ent

Rel

Set

13

NextOf.HasNation.Turkey

NationOf.NextOf.HasNation.Turkey

NationOf.NextOf.HasNation.Turkey

Set

Set

Root

“Who ranked right after Turkey?”

Turkey

Nation
TurkeySet

HasNation.Turkey

Ent

Rel

Set

14

Training a Semantic Parser

Setup: Each training example has an utterance,

a table, and the target denotation

▸ The logical form is latent

“Who ranked right after Turkey?”

Rank Nation Gold Silver Bronze

1 France 3 1 1

2 Turkey 2 0 1

3 Sweden 2 0 0

Sweden

15

Training a Semantic Parser

Given a training example:

1. Generate a bunch of logical forms (beam search)

2. Featurize the logical forms and score them

16

“Who ranked right after Turkey?”

Rank Nation Gold Silver Bronze

1 France 3 1 1

2 Turkey 2 0 1

3 Sweden 2 0 0

NationOf.NextOf.HasNation.Turkey

NationOf.HasNext.HasNation.Turkey

count(HasNation.Turkey)

Training a Semantic Parser

Given a training example:

1. Generate a bunch of logical forms (beam search)

2. Featurize the logical forms and score them

3. Execute the logical forms to identify the ones

that are consistent with the target denotation

4. Gradient update toward consistent logical forms

17

“Who ranked right after Turkey?”

Rank Nation Gold Silver Bronze

1 France 3 1 1

2 Turkey 2 0 1

3 Sweden 2 0 0

NationOf.NextOf.HasNation.Turkey

NationOf.HasNext.HasNation.Turkey

count(HasNation.Turkey)

Training a Semantic Parser

Given a training example:

1. Generate a bunch of logical forms (beam search)

2. Featurize the logical forms and score them

3. Execute the logical forms to identify the ones

that are consistent with the target denotation

4. Gradient update toward consistent logical forms

18

“Who ranked right after Turkey?”

Rank Nation Gold Silver Bronze

1 France 3 1 1

2 Turkey 2 0 1

3 Sweden 2 0 0

NationOf.HasNext.HasNation.Turkey

count(HasNation.Turkey)

NationOf.NextOf.HasNation.Turkey

Main Problem: Speed

Depending on the generality of the grammar, the

number of generated partial logical forms can grow

exponentially

▸ Many partial logical forms are also useless

count(NextOf.HasNation.Turkey)

sum(IndexOf.HasNation.Turkey)

argmax(NextOf.HasNation.Turkey, Index)

19

Main Problem: Speed

Depending on the generality of the grammar, the

number of generated partial logical forms can grow

exponentially

▸ To reach 40% accuracy, each example:
▹ Generates ~ 13700 partial logical forms
▹ Takes ~ 1.1 seconds (2.6 GHz machine)

▹ 3 epochs on 14K examples → 12 hours

20

Main Problem: Speed

Depending on the generality of the grammar, the

number of generated partial logical forms can grow

exponentially

▸ To reach 40% accuracy, each example:
▹ Generates ~ 13700 partial logical forms
▹ Takes ~ 1.1 seconds (2.6 GHz machine)

▹ 3 epochs on 14K examples → 12 hours

Our contribution: 11x speedup

21

Main Ideas

Idea 1: Macros

▸ Good logical forms share common patterns

(“macro”)

▸ Restrict the generation to such macros

Idea 2: Holistic Triggering

▸ There are still too many macros

▸ Only use macros from logical forms with similar

utterances

22

Idea 1: Macros

Good logical forms usually share useful patterns

(“macros”)

NationOf.NextOf.HasNation.Turkey

23

Idea 1: Macros

Good logical forms usually share useful patterns

(“macros”)

{REL1}Of.NextOf.Has{REL1}.{ENT2}

NationOf.NextOf.HasNation.Turkey

~ What {REL1} comes after {ENT2}

24

Idea 1: Macros

Good logical forms usually share useful patterns

(“macros”)

▸ When we find a consistent logical form in one

example, we want to cache and reuse its macro in

other examples

{REL1}Of.NextOf.Has{REL1}.{ENT2}

NationOf.NextOf.HasNation.Turkey

~ What {REL1} comes after {ENT2}

25

Training Algorithm

Given a training example:

▸ Try applying macros found in previous examples

to generate logical forms

▸ If a consistent logical form is found:
▹ Do gradient update as usual

▸ Otherwise:
▹ Fall back to the full compositional search

26

Macro Grammar

We encode the macros as grammar rules (“macro

rules”) so that we can use the same beam search

algorithm to generate logical forms from macros

{REL1}Of.NextOf.Has{REL1}.{ENT2}

NationOf.NextOf.HasNation.Turkey

27

Macro Grammar

We encode the macros as grammar rules (“macro

rules”) so that we can use the same beam search

algorithm to generate logical forms from macros

{REL1}Of.NextOf.Has{REL1}.{ENT2}

NationOf.NextOf.HasNation.Turkey

Rel[z
1

] + Ent[z
2

] → Root[z
1

-Of.NextOf.Has-z
1

.z
2

]

(Rel and Ent are built by terminal rules)

28

Training Algorithm

Given a training example:

▸ Try applying macros found in previous examples

▸ If a consistent logical form is found:
▹ Do gradient update as usual

▸ Otherwise:
▹ Fall back to the full compositional search

29

Training Algorithm Revised

Maintain a list R of macro rules

Given a training example:

▸ Apply beam search on R + terminal rules

▸ If a consistent logical form is found:
▹ Do gradient update as usual

▸ Otherwise:
▹ Fall back to beam search on the base grammar
▹ If a consistent logical form is found, extract its macro

and augment R

30

Decomposed Macro Rules

Some macros share parts

If we need to try both macros, it would be nice to

have to featurize the shared part only once

max({REL1}Of.Has{REL2}.>.{ENT3})

max(RankOf.HasGold.>.2)

{REL1}Of.argmin(Has{REL2}.>.{ENT3}, Index)

NationOf.argmin(HasSilver.>.2, Index)

31

NextOf.HasNation.Turkey

NationOf.NextOf.HasNation.Turkey

NationOf.NextOf.HasNation.Turkey

Set

Set

Root

“Who ranked right after Turkey?”

Turkey

Nation
TurkeySet

HasNation.Turkey

Ent

Rel

Set

32

NextOf.z
1

z
1

-Of.z
2

z
1

Set

Set

Root

{ENT2}

{REL1}
z

1
Set

Has-z
1

.z
2

Ent

Rel

Set

33

NextOf.z
1

z
1

-Of.z
2

z
1

Set

Set

Root

{ENT2}

{REL1}
z

1
Set

Has-z
1

.z
2

Ent

Rel

Set

34

NextOf.z
1

z
1

-Of.z
2

z
1

Set

Set

Root

{ENT2}

{REL1}
z

1
Set

Has-z
1

.z
2

Ent

Rel

Set

Ent[z
1

] → M
1

[z
1

]
35

NextOf.z
1

z
1

-Of.z
2

z
1

Set

Set

Root

{REL1} M
1

Has-z
1

.z
2

Rel

Set

Ent[z
1

] → M
1

[z
1

]
36

NextOf.z
1

z
1

-Of.z
2

z
1

Set

Set

Root

{REL1}

Has-z
1

.z
2

Rel

Set

M
1

Rel[z
1

] + M
1

[z
2

] → M
2

[z
1

-Of.NextOf.Has-z
1

.z
2

]

Ent[z
1

] → M
1

[z
1

]
37

z
1

Root

M
2

Rel[z
1

] + M
1

[z
2

] → M
2

[z
1

-Of.NextOf.Has-z
1

.z
2

]

Ent[z
1

] → M
1

[z
1

]
38

z
1

Root

M
2

Rel[z
1

] + M
1

[z
2

] → M
2

[z
1

-Of.NextOf.Has-z
1

.z
2

]

Ent[z
1

] → M
1

[z
1

]

M
2

[z
1

] → Root[z
1

]

39

Training Algorithm Revised

Maintain a list R of macro rules

Given a training example:

▸ Apply beam search on R + terminal rules

▸ If a consistent logical form is found:
▹ Do gradient update as usual

▸ Otherwise:
▹ Fall back to beam search on the base grammar
▹ If a consistent logical form is found, extract its macro

and augment R with decomposed rules

40

Training Algorithm Revised

Maintain a list R of macro rules

Given a training example:

▸ Apply beam search on R + terminal rules

▸ If a consistent logical form is found:
▹ Do gradient update as usual

▸ Otherwise:
▹ Fall back to beam search on the base grammar
▹ If a consistent logical form is found, extract its macro

and augment R with decomposed rules

New Problem: R grows with the number of examples
41

Idea 2: Holistic Triggering

Instead of using all macro rules, use only a subset

An ideal subset R' of macro rules should:

▸ be able to generate consistent logical form

▸ be small (to save time)

How do we choose such a subset?

42

Idea 2: Holistic Triggering

Observation: Similar utterances tend to give logical

forms with identical or similar macros

“Who ranked right after Turkey?”

{REL1}Of.NextOf.Has{REL1}.{ENT2}

NationOf.NextOf.HasNation.Turkey

“Who took office right after Uriah Forrest?”

{REL1}Of.NextOf.Has{REL1}.{ENT2}

NameOf.NextOf.HasName.UriahForrest

43

Idea 2: Holistic Triggering

We select which macro rules to use based on

utterance similarity:

▸ Compute edit distances between the current

utterance and utterances in previous examples
▹ Word-level Levenshtein after removing determiners

and infrequent nouns

▸ Get the K = 40 nearest neighbors

▸ Get the macro rules from the consistent logical

forms found in those examples

44

Final Training Algorithm

Maintain a list R of macro rules

Given a training example:

▸ Holistic triggering → macro rule subset R'

▸ Apply beam search on R' + terminal rules

▸ If a consistent logical form is found:
▹ Do gradient update as usual

▸ Otherwise:
▹ Fall back to beam search on the base grammar
▹ If a consistent logical form is found, extract its macro

and augment R with decomposed rules

45

Final Training Algorithm

Maintain a list R of macro rules

Given a training example:

▸ Holistic triggering → macro rule subset R'

▸ Apply beam search on R' + terminal rules

▸ If a consistent logical form is found:
▹ Do gradient update as usual

▸ Otherwise, if it is the first epoch:
▹ Fall back to beam search on the base grammar with

early stopping (found a consistent LF or generated 5000 LFs)

▹ If a consistent logical form is found, extract its macro
and augment R with decomposed rules 46

Prediction

Maintain a list R of macro rules

Given a test example:

▸ Holistic triggering → macro rule subset R'

▸ Apply beam search on R' + terminal rules

▸ Return the logical form with the highest score

47

Related work

UBL (Unification Based Learning)
(Kwiatkowski et al., 2010; 2011)

48

next_to(ny, vt)

New York borders Vermont

Related work

49

ny

New York

UBL (Unification Based Learning)
(Kwiatkowski et al., 2010; 2011)

λx.λy.next_to(x, y) vt

borders Vermont

Related work

50

borders λx.λy.next_to(x, y)

UBL (Unification Based Learning)
(Kwiatkowski et al., 2010; 2011)

ny

New York

λx.λy.next_to(x, y) vt

borders Vermont

Related work

51

UBL / Factored UBL Our Work

Learn templates and the possible
words to trigger them

Learn templates; choose templates
with holistic triggering

Templates are for lexicon learning Templates are for speed

borders λx.λy.next_to(x, y)

UBL (Unification Based Learning)
(Kwiatkowski et al., 2010; 2011)

Experiment: Accuracy

Dev Test

SEMPRE 2015
(Pasupat and Liang, 2015)

37.0 37.1

Neural Programmer
(Neelakantan et al., 2016)

37.5 37.7

Neural Multi-Step Reasoning
(Haug et al., 2017)

- 38.7

(averaged over 3 dev splits)

52

Experiment: Accuracy

Dev Test

SEMPRE 2015
(Pasupat and Liang, 2015)

37.0 37.1

Neural Programmer
(Neelakantan et al., 2016)

37.5 37.7

Neural Multi-Step Reasoning
(Haug et al., 2017)

- 38.7

Base Grammar
(SEMPRE 2015 ++)

40.6 42.7

▸ Improved the TokenSpan → Ent rule

▸ Added a few compositional rules

▸ Changed the objective function to “first good vs first bad”

instead of log-likelihood
53

Experiment: Accuracy

Dev Test

SEMPRE 2015
(Pasupat and Liang, 2015)

37.0 37.1

Neural Programmer
(Neelakantan et al., 2016)

37.5 37.7

Neural Multi-Step Reasoning
(Haug et al., 2017)

- 38.7

Base Grammar
(SEMPRE 2015 ++)

40.6 42.7

Macro Grammar 40.4 43.7

54

Experiment: Accuracy

Dev Test

SEMPRE 2015
(Pasupat and Liang, 2015)

37.0 37.1

Neural Programmer
(Neelakantan et al., 2016)

37.5 37.7

Neural Multi-Step Reasoning
(Haug et al., 2017)

- 38.7

Base Grammar
(SEMPRE 2015 ++)

40.6 42.7

Macro Grammar 40.4 43.7

Krishnamurthy et al., 2017 42.7
(5 dev splits)

43.3

Krishnamurthy et al., 2017 (ensemble) - 45.9

55

Experiment: Speed

Accuracy

Time (ms/example)

Train Predict

SEMPRE 2015 37.0 619 645

Base Grammar 40.6 1117 1150

Macro Grammar 40.4 99 70

(averaged over 3 dev splits)

56

Experiment: Speed

Accuracy

Time (ms/example)

Train Predict

SEMPRE 2015 37.0 619 645

Base Grammar 40.6 1117 1150

Macro Grammar 40.4 99 70

Macro Grammar
No macro decomposition

40.3 177 159

Macro Grammar
No holistic triggering

40.1 361 369

(averaged over 3 dev splits)

57

Experiment: Coverage

Found a
consistent LF

SEMPRE 2015 76.6%

Base Grammar 81.0%

Macro Grammar 75.6%

▸ Restricted search space → Smaller chance to get a consistent LF

58

Experiment: Coverage

Found a
consistent LF

Top consistent LF is
semantically correct

SEMPRE 2015 76.6% -

Base Grammar 81.0% 48.7%

Macro Grammar 75.6% 48.7%

(over 300 examples)

▸ Restricted search space → Smaller chance to get a consistent LF

▸ But the ability to find a semantically correct LF remains the same

59

Experiment: Coverage

60

▸ Extracted 123 macros

▸ Top 34 macros cover 90% of the consistent logical forms found

▸ Most of the top 34 macros have clear semantics

Experiment: Tradeoffs

▸ Macro grammar is fast even with larger beam sizes

(first dev split)

61

Experiment: Tradeoffs

▸ Macro grammar is fast even with larger beam sizes

▸ The number of neighbors should be tuned

(first dev split)

62

Experiment: Tradeoffs

▸ Macro grammar is fast even with larger beam sizes

▸ The number of neighbors should be tuned

▸ We can reach 42% accuracy even with only 1500 fallback calls to the

base grammar (~ 1500 times we augment the macro grammar)

(first dev split)

63

Summary

Method for speeding up semantic parsing

▸ Why is it faster? Because we search over a

restricted space of relevant logical forms

▸ Still maintain coverage by falling back to the base

grammar when needed

▸ The speed allows us to add more bells and

whistles (rules and features) to the model

64

